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Abstract  
The combined effects of Hall current and rotation on MHD unsteady free convective flow 

through a porous medium have been investigated. The uniform magnetic field and the suction 

velocity are applied perpendicular to the porous plate. The obtained non-dimensional, non-similar 

coupled non-linear and partial differential equations have been solved by explicit finite difference 

technique. Numerical solutions for velocities and temperature distributions are obtained for 

various parameters by the above-mentioned technique. The shear stresses and Nusselt number are 

also investigated. The stability conditions and convergence criteria of the explicit finite 

difference scheme are established for finding the restriction of the values of various parameters to 

get more accuracy. The obtained results are illustrated with the help of graphs to observe the 

effects of the Hall parameter ( )m  and magnetic parameter 2( )M  along with various parameters.  
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Nomenclature 

x, y, z Cartesian coordinates     κ  Thermal conductivity 

u, v, w Velocity components     eµ  Magnetic permeability  

υ  Coefficient of kinematic viscosity   ρ  Density of the fluid  

m  Hall parameter       σ  Electrical conductivity 

g  Gravitational acceleration    Ω  Angular velocity 

pC  Specific heat at constant pressure   k ʹ′  Porous medium permeability 

β  Coefficient of thermal expansion   2M  Magnetic parameter 

0H  Constant magnetic field     cE  Eckert number  

0w  Constant suction velocity    rP  Prandtl number 
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k  Permeability parameter    kE   Ekman number 

U  Dimensionless primary velocity   xτ  Primary shear stress  

V  Dimensionless secondary velocity   yτ  Secondary shear stress 

θ  Dimensionless temperature    uN  Nusselt number 

 

1. Introduction 
MHD is the science of motion of electrically conducting fluid in presence of magnetic field. 

There are numerous examples of application of MHD principle. Engineers apply MHD principle 

in fusion reactors, dispersion of metals, metallurgy, design of MHD pumps, MHD generators and 

MHD flow meters etc. Magnetohydrodynamics is currently undergoing a period of great 

enlargement and differentiation of subject matter. The study of magnetohydrodynamics viscous 

flow with Hall current has important engineering applications like Hall accelerators, power 

generators, constructions of turbines and centrifugal machines. The MHD free convection with 

heat transfer in a rotating system has been studied due to its importance in astrophysics, 

geophysics, soil science, the underground water energy storage system and nuclear power 

reactors etc. The rotating flow of an electrically conducting fluid in presence of magnetic field 

has its importance in geophysical problems. The study of rotating flow problems is also 

important in the solar physics dealing with the sunspot development, the solar cycle and the 

structure of rotating magnetic stars. Considerable attention has been given to the unsteady free-

convection flow of viscous incompressible and electrically conducting fluid in the presence of 

applied magnetic field in connection with the theory of fluid motion in the liquid core of the 

Earth, meteorological, and oceanographic applications. The study of magnetohydrodynamic 

viscous flows with Hall currents has important engineering applications like power generators 

and MHD accelerators. MHD in the present form is due to pioneer contribution of several notable 

authors like Alfven (1942) and Cowling (1957). It was emphasized by Cowling that when the 

strength of the applied magnetic field is sufficiently large, Ohm’s law needs to be modified to 

include Hall current. In the presence of a strong magnetic field, the charged particles are tied to 

the lines of force, and this prevents their motion transverse to the magnetic field. Then, the 

tendency of the current to flow in a direction normal to both the electric and magnetic fields is 

called Hall effect and the corresponding current is known as Hall current. Further, it has been 

recognized that significant viscous dissipation may occur in natural convection in various devices 

which are subject to large decelerations or which operate at high rotative speeds. In addition, the 
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viscous dissipation effects may also be present in stronger gravitational fields e.g., on larger 

planets, in large masses of gas in space and in many geological processes. 

In last few decades, the study of hydrodynamic and hydromagnetic boundary-layer flows with or 

without Hall current effects in a rotating fluid have received the attention of many research 

workers. Batchelor (1970) studied the boundary layer flow on a horizontal plate. The effect of 

uniform transverse magnetic field on such a layer was investigated by Gupta (1972). However, 

when the strength of the magnetic field is very strong, the effects of Hall current play a 

significant role in determining the flow features. On the other hand, the study of flow through 

porous medium has become of principal interest in many scientific and engineering applications. 

Yamamoto and Iwamura (1976) investigated the flow with convective acceleration through a 

porous medium. Soundalkegar and Pop (1979) studied the free convection flow past a vertical 

isothermal infinite porous plate in a rotating fluid. Raptis et al. (1981) extended the problem and 

have studied the effects of transverse magnetic field on hydromagnetic free convection 

considering Hall effects into account. Raptis (1983) discussed the unsteady free convective flow 

through a porous medium bounded an infinite vertical plate with constant suction. Ram (1990) 

investigated the effects of Hall current and wall temperature oscillation on convective flow in a 

rotating fluid through porous medium. Takhar et al. (2002) observed the MHD flow over a 

moving plate in a rotating fluid with magnetic field, Hall currents and free-stream velocity. 

Haque and Alam (2009) studied the transient heat and mass transfer by mixed convection flow 

from a vertical porous plate with induced magnetic field, constant heat and mass fluxes. Ziaul 

Haque and  Alam (2011) investigated the micropolar fluid behaviours on unsteady MHD heat and 

mass transfer flow with constant heat and mass fluxes, joule heating and viscous dissipation. Das 

and Jana (2012) also studied the unsteady MHD free convection flow near a moving vertical 

plate in a porous medium. Guchhait et al. (2012) observed the combined effects of Hall currents 

and rotation on MHD mixed convection oscillating in a rotating vertical channel. 

Hence, the purpose of the present study is to extend the work of Guchhait et al. (2012) and 

to investigate the effects of both Hall current and viscous dissipation of an electrically conducting 

fluid bounded by an infinite vertical porous plate in a rotating system. The proposed model has 

been transformed into non-similar coupled partial differential equation by usual transformations. 

The governing equations are solved numerically by using the explicit finite difference technique. 

Finally, the results of this study have been discussed graphically for different values of the well-

known parameters.  

 



 
113 

Fig. 1. Physical configuration and coordinate 

2. Mathematical Analysis 
An unsteady MHD free convective 

flow of an electrically conducting 

incompressible viscous fluid past an 

infinite vertical porous plate with the 

effects of Hall current is considered. 

Let the fluid rotate with uniform 

angular velocity Ω  about the z -axis 

normal to the plate. It is assumed that 

there is a constant suction velocity. The 

flow is also assumed to be in the x -axis 

that is taken along the plate in the 

upward direction and z -axis is normal to 

it. At time 0t > , the temperature at the 

plate is constantly raised from wT  to T∞  which is thereafter maintained constant. Where wT   and 

T∞  are the temperatures at the wall and outside the plate respectively. A uniform magnetic field 

0H  is imposed along the z -axis and the plate is taken to be electrically non-conducting. It is 

assumed that the induced magnetic field is negligible so that ( )00,0,H=H . This assumption is 

justified when the magnetic Reynolds number is very small. The equation of conservation of 

electric charge . 0=J∇  gives zj =  constant, where ( ), ,x y z= j j jJ . This constant is assumed to 

be zero at the non conducting plate, therefore 0zj =  everywhere in the flow. Since the plate is 

infinite in extent, all the physical variables except pressure depend on z  and t  only. Hence the 

equation of continuity . 0=q∇  gives 0 ( 0)w w= − > , where ( , , )q u v w= . The generalized Ohm’s 

law including the effect of Hall current (Cowling) is; 

( )
0

1 .e e

e
ee p

H en
ω τ

σ µ
⎛ ⎞

+ = + +⎜ ⎟
⎝ ⎠

J H E qJ H× × ∇                                                                    (1) 

where eω  is the cyclotron frequency and eτ  is electron collision time, σ  is the electric 

conductivity, eµ  is the magnetic permeability, e  is the electric charge, en  is the number density 

of electron and ep  be the electron pressure. It has been assumed that the ion slip and 

thermoelectric effect is negligible. Further it is considered that the electric field 0=E  and 

electron pressure have been neglected. Under this assumption equation (1) gives; 
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( )0
21

e
x

Hj v mu
m

σµ
= +

+
                                                                                                                     (2) 

( )0
21

e
y

Hj mv u
m

σµ
= −

+
                                                                                                                     (3) 

Thus, accordance with the above assumptions relevant to the problem and under the 

electromagnetic Boussinesq approximation, in a rotating frame the basic boundary layer 

equations are given by; 

The momentum equations                                                                                                                                 

( ) ( )
22
0

0 2 2 '2Ω
1
eHu u uw g T T v mv u u

t z z m k
σµ υ

υ β υ∞

∂ ∂ ∂
− = + − + + − −

∂ ∂ ∂ +
                                            (4) 

( )
22
0

0 2 2 '2Ω
1
eHv v vw u v mu v

t z z m k
σµ υ

υ υ
∂ ∂ ∂
− = − − + −

∂ ∂ ∂ +
                                                                   (5)     

The energy equation  
2 22

0 2
p p

T T T v uw
t z C z C z z

κ υ
ρ

⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− = + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
                                                                           (6) 

with the corresponding boundary conditions are; 

0,t >          0u w= , 0v = , wT T=  at  0z =                                                                                    (7) 

                 0u = , 0v = , T T∞→  as z→∞                                                                                (8) 

where ,u v  and w  are the ,x y  and z  components of velocity vector respectively, e em ω τ=  is the 

Hall parameter, υ  is the coefficient of kinematic viscosity, ρ  is the density of the fluid, κ  is 

thermal conductivity, pC  is the specific heat at constant pressure, g  is the acceleration due to 

gravity, β  is the coefficient of volume expansion and 'k  is the permeability of the porous 

medium. To obtain the governing equations and the boundary conditions in dimensionless form, 

the following non-dimensional quantities are introduced as; 
2

0 0

0 0

, , ,zw twu vZ U V
w w

τ
υ υ

= = = =  and 
w

T T
T T

θ ∞

∞

−
=

−
 

Substituting the above relations in equations (4)-(6) and the boundary conditions (7) and (8) are; 

( )
2 2

2 22
1r k

U U U M UG E V mV U
Z Z m k

θ
τ

∂ ∂ ∂
− = + + + − −

∂ ∂ ∂ +
                                                                (9) 

( )
2 2

2 22
1k

V V V M VE U V mU
Z Z m kτ

∂ ∂ ∂
− = − − + −

∂ ∂ ∂ +
                                                                         (10) 

2 22

2

1
c

r

V UE
Z P Z Z Z

θ θ θ
τ

⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− = + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
                                                                             (11) 
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Fig. 2. Explicit finite difference system grid 

 

with the corresponding boundary conditions are;  

0,τ >         1U = , 0V = , 1θ =  at 0Z =                                                                                    (12) 

                  0U = , 0V = , 0θ =  as Z →∞                                                                                 (13) 

where 3
0

( )w
r

g T TG
w

υ β ∞−
=  (Grashof number), 2

0

Ω
kE w

υ
=  (Ekman number), 

2
2 0

2
0

eHM
w

σµ υ
ρ

= (Magnetic parameter), 
2 '
0
2

w kk
υ

=  (Permeability parameter), 
2
0

( )c
p w

wE
C T T∞

=
−

 

(Eckert number), p
r

C
P

υρ

κ
=  (Prandtl number).  

 
3. Shear Stresses and Nusselt Number 

From the velocity field, the effects of various parameters on the plate shear stresses have 

been investigated. The primary shear stress is in the x-direction, 
0

x
z

u
z

τ µ
=

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 and the 

secondary shear stress is in the y-direction, 
0

y
z

v
z

τ µ
=

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 which are proportional to 

0Z

U
Z =

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

and 
0Z

V
Z =

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

 respectively. From the temperature field, the effects of various 

parameters on heat transfer coefficient (Nusselt number) have been calculated. Nusselt number, 

0
u

z

TN
z

µ
=

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠
 which is proportional to 

0ZZ
θ

=

∂⎛ ⎞−⎜ ⎟∂⎝ ⎠
. Here the details are not shown for brevity.  

 

4. Numerical Technique 
In this section, the governing 

second order coupled dimensionless 

partial differential equations with the 

associated initial and boundary 

conditions have been solved. For 

simplicity, the explicit finite difference 

method has been used to solve (9)-(11) 

correspond to the boundary conditions 

(12) and (13). The present problem 

requires a set of finite difference 
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equation. In this case the region within the boundary layer is divided by some perpendicular lines 

on Z -axis as shown in Fig. 2. It is assumed that the maximum length of boundary layer is 

max ( 25)Z =  as corresponds to Z →∞  i.e. Z  varies from 0 to 25  and the number of grid spacing 

in  direction is ( )400p = , hence the constant mesh size along Z -axis becomes 

0.0625(0 25)Z ZΔ = ≤ ≤  with a smaller time space 0.001τΔ = . Let 1 1,n n
k kU V+ +  and 1n

kθ
+  denote 

values of ,n n
k kU V  and n

kθ   at the end of time step respectively. The explicit finite difference 

approximation gives;    

( )
1 2

1 1 1
2 2

2 2
Δ Δ (Δ ) 1

n n n n n n n n
n n n nk k k k k k k k

r k k k k k
U U U U U U U UMG E V mV U

Z Z m k
θ

τ

+
+ + −− − − +

− = + + + − −
+

             (14) 

( )
1 2

1 1 1
2 2

2 2
Δ Δ (Δ ) 1

n n n n n n n n
n n nk k k k k k k k

k k k k
V V V V V V V VME U V mU

Z Z m kτ

+
+ + −− − − +

− = − − + −
+

                             (15) 

2 21
1 1 1 1 1

2

21
Δ Δ (Δ ) Δ Δ

n n n n n n n n n n n
k k k k k k k k k k k

c
r

V V U UE
Z P Z Z Z

θ θ θ θ θ θ θ
τ

+
+ + − + +

⎡ ⎤⎛ ⎞ ⎛ ⎞− − − + − −
⎢ ⎥− = + +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

                         (16)                

and the boundary conditions with the finite difference scheme are; 

0 1nU = , 0 0nV = , 0 1nθ =                                                                                                                 (17) 

0n
LU = , 0n

LV = , 0n
Lθ =  where L→∞                                                                                       (18) 

Here the subscript k  designates the grid points with z  coordinate and n  represents a value of 

time, Δnτ τ=  where 1,2,3,n = …. At the end of time step Δτ , the new primary velocity 1n
kU
+ , 

the new secondary velocity 1n
kV
+  and the new temperature 1n

kθ
+  distributions at all interior nodal 

points, may be calculated by successive applications of (14) to (16) respectively. Also the 

numerical values of the shear stresses and Nusselt number are evaluated by Five-point 

approximate formula for their derivatives.  

  

4. Stability and Convergence Analysis 
Since an explicit procedure is being used, the analysis will remain incomplete unless the 

stability and convergence of the finite difference technique has been established. For the constant 

mesh sizes the stability criteria of the scheme may be established as follows. The general terms of 

the Fourier expansion for ,n n
k kU V  and n

kθ  at a time arbitrarily called 0τ =  are i Ze α  apart from a 

constant, where 1i = −  . At a time τ  later, these terms become; 
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( ) i ZU e αψ τ∶  

                                                               ( ) i ZV e αη τ∶                                                            (19) 

                                                               ( ) i Ze αθ ξ τ∶  

and after the time step these terms become; 

( ) i ZU e αψ τʹ′∶  

                                                               ( ) i ZV e αη τʹ′∶                                                           (20) 

                                                               ( ) i Ze αθ ξ τʹ′∶  

Substituting (19) and (20) into (14) to (16), the following equations upon simplification have 

been obtained;  

( ) ( ) ( )( ) ( )( ) ( ) ( )
Δ

2

1 2 cos Δ 1
2

Δ Δ (Δ )

i Z

r k

e Z
G E

Z Z

αψ τψ τ ψ τ ψ τ α
ξ τ η τ

τ

−ʹ′ − −
− = + +  

                                                               ( ) ( ) ( )2

2  
1
M m
m k

ψ τ
η τ ψ τ⎡ ⎤+ − −⎣ ⎦+

                                (21) 

( ) ( ) ( )( ) ( )( ) ( )
Δ

2

1 2 cos Δ 1
2

Δ Δ (Δ )

i Z

k

e Z
E

Z Z

αη τη τ η τ η τ α
ψ τ

τ

−ʹ′ − −
− = −  

                                                               ( ) ( ) ( )2

2  
1
M m
m k

η τ
η τ ψ τ⎡ ⎤− + −⎣ ⎦+

                                (22) 

( ) ( ) ( )( ) ( )( )Δ

2

1 2 cos Δ 11
Δ Δ (Δ )

i Z

r

e Z
Z P Z

αξ τξ τ ξ τ ξ τ α

τ

−ʹ′ − −
− =  

                                                   ( ) ( )
2 2Δ Δ1 1

Δ Δ

i Z i Z

c
e eE V U
Z Z

α α

η τ ψ τ
⎡ ⎤⎛ ⎞ ⎛ ⎞− −
⎢ ⎥+ +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

                       (23) 

Equations (21), (22) and (23) can be written in the following form; 
' A B Cψ ψ η ξ= + +  

                                                      ' B Aη ψ η= − +                                                                (24) 
' D E Fξ ψ η ξ= + +  

where, ( ) ( )
2

Δ
2 2

Δ 2Δ Δ1 1 cos Δ 1 Δ
Δ (Δ ) 1

i Z MA e Z
Z Z m k

ατ τ τ
α τ= + − + − − −

+
 

2

22 Δ Δ
1k
MB E m
m

τ τ= +
+

 

ΔrC G τ=  



 
118 

( )2Δ
2

Δ 1
(Δ )

i Z
cD UE e
Z

ατ
= −  

( )2Δ
2

Δ 1
(Δ )

i Z
cE VE e
Z

ατ
= −  

( ) ( )Δ
2

Δ 1 2Δ1 1 cos Δ 1
Δ (Δ )

i Z

r

F e Z
Z P Z

ατ τ
α= + − + −  

Equations (24) may be expressed in matrix form as follows; 

'

'

'

0
A B C
B A
D E F

ψ ψ

η η

ξ ξ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

That is ' Tϕ ϕ= , where 

'

' '

'

, 0
A B C

T B A
D E F

ψ

ϕ η

ξ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 and 
ψ

ϕ η

ξ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

For obtaining the stability condition, it is necessary to find out eigenvalues of the amplification 

matrix T . For this explicit finite difference solution, the dimensionless time difference Δτ  is 

very small that is tends to zero. Under this consideration, 0, 0, 0B C D→ → →  and 0E→ . For 

stability, the modulus of each eigenvalue of the amplification matrix T  must not exceed unity. 

Let, 2

Δ 2Δ, , Δ
Δ (Δ )

a b c
Z Z
τ τ

τ= = =  

Then,       
2

2

11 2
1 2
M cA a b
m k

⎡ ⎤⎛ ⎞
= − + + +⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦

 and 11 2
r

F a b
P

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
 

Here, the coefficients ,a b  and c  are real and non-negative. So, the maximum modulus of A  and 

F  occur when ΔZ mα π= . The values A  and F  are greater when m  is odd integer. To satisfy 

1A ≤ , 1F ≤  , the most negative allowable value are 1A = −  and 1F = − . 

Hence, the stability conditions of the problem are as furnished below; 

2

2 2

Δ 2Δ 1 Δ 1
Δ (Δ ) 1 2

M
Z Z m k
τ τ τ⎛ ⎞
+ + + ≤⎜ ⎟+⎝ ⎠

 and 2

Δ 1 2Δ 1
Δ (Δ )rZ P Z
τ τ
+ ≤                                                        (25) 

Form the above equation (25) the convergence limits for the model of flow are 2 443M ≤ , 

0.001m ≥ , 0.002k ≥  and 0.5203rP ≥ .  
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5. Results and Discussion 
To investigate the practical situation of the problem, the numerical values of the 

dimensionless primary velocity ( )U , secondary velocity ( )V  and temperature ( )θ  within the 

boundary layer for the free convection flow have been obtained. Because of the great importance 

of cooling problem in nuclear engineering in connection with the cooling of reactors, the value of 

the Grashof number for heat transfer is taken positive.  Since  the  most  important  fluids  are 

atmospheric air, salt water and water so the results are limited to 0.71rP = ( Prandtl number for 

air at 20 Cο ), 1.0rP = ( Prandtl number for salt water at 20 Cο ) and 7.0rP =  ( Prandtl number for 

water at 20 Cο ). In addition, The values of Hall parameter ( )m , Magnetic parameter 2( )M  and 

porous permeability parameter ( )k  are taken according to the convergence criteria. In this study, 

the  values  of  other  parameters  kE  and cE  are  chosen arbitrarily. 

For steady state solutions of the problem, the computations have been carried out up to 20τ = . It 

is observed that the values of this computation, however, show little changes after 15τ = . Thus 

the solution at 20τ =  are essentially steady-state solutions. The nature of  primary velocity, 

secondary velocity, temperature distributions, shear stresses and Nusselt number are illustrated in 

Figs. 3-31 for different values of various parameters.   

The primary velocity profile has a minor increasing effect for the rise of Hall parameter ( )m  

which is presented in Fig. 3 while the secondary velocity decreases significantly with the increase 

of m  in Fig. 4.  
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Fig. 3. Primary velocity profiles for 
different values of m  

  Fig. 4. Secondary velocity profiles for 
different values of m  
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It is analyzed that the primary velocity decreases with the rise of magnetic parameter 2( )M  

which is plotted in Fig. 5 while the secondary velocity shows the opposite nature of primary 

velocity for 2M  in Fig. 6. It has been shown in Fig. 7 that the increasing values of the Grashof 

number ( )rG  increases the primary velocity profile while the secondary velocity profile shows 

reverse effect for rG  which is shown in Fig. 8.  
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It is observed in Fig. 9 and Fig. 10 that both the velocity profiles have a decreasing effect with 

the increase of Ekman number ( )kE . In Fig. 11, the rise of porous permeability parameter ( )k  

leads to an increase in primary velocity profiles while a decreasing effect on secondary velocity 

field is observed in Fig. 12 for increasing value of k .  

Fig. 7. Primary velocity profiles for 
different values of rG  

  Fig. 8. Secondary velocity profiles for 
different values of rG  

Fig. 5. Primary velocity profiles for 
different values of 2M  

  Fig. 6. Secondary velocity profiles for 
different values of 2M  
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The primary velocity increases with the increase of Eckert number ( )cE  which has been observed 

in Fig. 13, while the secondary velocity decreases with the increase of Eckert number ( )cE  which 

has been observed in Fig. 14. In Fig. 15, it has shown that the primary velocity profile decreases 

drastically for the increase of Prandtl number ( )rP , while secondary velocity leads opposite 

nature of primary velocity profile for the increase of rP  which is shown in Fig. 16.  

 

 

 

Fig. 11. Primary velocity profiles for 
different values of k  

  Fig. 12. Secondary velocity profiles for 
different values of k  

Fig. 9. Primary velocity profiles for 
different values of kE  

  Fig. 10. Secondary velocity profiles for 
different values of kE  
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Fig. 17 shows that there is a minor increasing effect on temperature distribution as Hall parameter 

( )m  increases. The temperature decreases with the increase of Magnetic parameter 2( )M , which 

is shown in Fig. 18. It is observed that temperature distribution has an increasing effect with the 

rise of rG  that is illustrated in Fig. 19. In Fig. 20, the rise of porous permeability parameter ( )k  

leads to an increase in temperature distribution. From Fig. 21 it is shown that the increasing 

values of the Eckert number ( )cE  increases the temperature distribution. The rise of Prandtl 

number ( )rP  causes fall of temperature, that is shown in Fig. 22. The effect of Ekman number 

( )kE  on temperature (is not shown for brevity) follows the interesting pattern.   

 

Fig. 15. Primary velocity profiles for 
different values of rP  

 Fig. 16. Secondary velocity profiles for 
different values of rP   

Fig. 13. Primary velocity profiles for 
different values of cE  

  Fig. 14. Secondary velocity profiles for 
different values of cE  
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Fig. 21. Temperature profiles for 
different values of cE  

Fig.22. Temperature profiles for 
different values of rP  

Fig. 19. Temperature profiles for 
different values of rG  

Fig.20. Temperature profiles for 
different values of k  

Fig. 17. Temperature profiles for 
different values of m  

Fig.18. Temperature profiles for 
different values of 2M  
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In Fig. 23, it is observed that primary shear stress xτ  increases with the increase of both Hall 

parameter ( )m  and porous permeability parameter ( )k  whereas secondary shears stress yτ  

decreases with the rise of both m  and k  that is shown in Fig. 24. Also, the primary shear stress 

xτ  decreases with the increase of Magnetic parameter 2( )M  whereas it increases with the 

increase of Grashoff number ( )rG , which are shown in Fig. 25. The secondary shear stress yτ  

shows reverse effect of primary shear stress  for 2M  and rG  as shown in Fig. 26. Primary shear 

stress xτ  increases with the rise of Eckert number ( )cE  and decreases with the rise of Prandtl 

number ( )rP  that is shown in Fig. 27 whereas secondary shears stress yτ  shows completely 

reverse effect for cE  and rP  that is shown in  Fig. 28.  
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Fig. 25. Primary shear stress for 
different values of 2M  and rG    

Fig. 26. Secondary shear stress for 
different values of 2M  and rG  

Fig. 23. Primary shear stress for 
different values of m  and k   

Fig. 24. Secondary shear stress for 
different values of  m  and k  
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The Fig. 29 shows that the Nusselt number has a minor increasing effect as Hall parameter ( )m  

rises whereas it increases with the rise of porous permeability parameter ( )k . It is observed in 

Fig. 30 that the Nusselt number falls with the rise of Magnetic parameter 2( )M  and increases 

with the increase of Grashoff number ( )rG . In Fig. 31, the Nusselt number increases with the rise 

of cE  and decreases with the rise of rP . 
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 Fig. 29. Nusselt number for different 
values of m  and k  

Fig. 30. Nusselt number for different 
values of 2M  and rG  

Fig. 27. Primary shear stress for 
different values of cE  and rP   

Fig. 28. Secondary shear stress for 
different values of cE  and rP   
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Finally, a qualitative comparison of the present steady-state results with the published results of 

Guchhait et al. (2012) is presented in Table 1. The present results are qualitatively as well as 

quantitatively quite different in case of some flow parameters.  

Increased 
Parameter 

Previous results given by Guchhait 
et al. (2012) 

Present results 

U  V  θ  xτ  yτ  uN  U  V  θ  xτ  yτ  uN  

m  Dec. Inc. N.E. Dec. Inc. N.E. 
Minor 
Inc. 

Dec. 
Minor 
Inc. 

Inc. Dec. 
Minor 
Inc. 

2M  Dec. Dec.  Dec. Dec.  Dec. Inc.  Dec. Inc.  

rG  Inc. Inc.  Inc. Inc.  Inc. Dec.  Inc. Dec.  

rP  Inc. Inc. Inc. Inc. Inc. Inc. Dec. Inc. Dec. Dec. Inc. Dec. 

kE  Dec. Dec.  Dec. Dec.  Dec. Dec.  Dec. Dec.   

 

 

6. Conclusions 
In this study, the finite difference solution of unsteady MHD free convective fluid flow 

through a porous vertical plate in presence of Hall current and viscous dissipation in a rotating 

system is investigated. The obtained results are graphically presented for the variations of 

associated parameters. Some of the important findings of this observation are given below;  

i. The primary velocity increases with the increase of m , k , rG  and cE  while it decreases 

with the increase of 2M , kE  and rP . 

Table 1. Qualitative comparison of the present results with previous results 

Fig. 31. Nusselt number for different 
values of cE  and rP  
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ii. The secondary velocity increases with the increase of 2M  and rP  while it decreases with 

the increase of m , k , rG , cE  and kE . 

iii. The fluid temperature is increasingly affected by k , rG , cE  and kE  and decreasingly 

affected by 2M  and rP .  

iv. The primary shear stress increases with the increase of m , k , rG  and cE  while it 

decreases with the increase of 2M , kE  and rP . 

v. The secondary shear stress increases with the increase of 2M  and rP  while it decreases 

with the increase of m , k , rG , cE  and kE .  

vi. The Nusselt number is increasingly affected by k , rG , cE  and kE  and decreasingly 

affected by 2M  and rP . 
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